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ABSTRACT 

Two general theorems about the intersections o f  a r andom walk with a 
random set are proved. The result is applied to the cases when the random set 
is a (deterministic) half-line and a two-sided random walk. 

1. Introduction 

Let R(n), n E Z + ,  denote  a r a n d o m  walk taking values in Z d as in Spitzer  

[ 10], with killing rate fl ~ (0, 1), start ing at O. Then  it is well known that  i f  

f = P o { R ( n ) ~ O , n > O }  and g = E o  I{R(n)=O} , 
n 0 

then fg = 1. To  see this we need only consider  the last hi t t ing t ime  a ,  

and  note  that  

and  hence 

a = sup{n : R ( n )  = 0}, 

P(tr = n) = P{R(n)= O ; R ( j )  ~ O,j > n} 

= P{R(n) = O}f,  
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ct~ 

n = : 0  

= f ~ P{R(n) = 0) = fg. 
n = 0  

If  we take a slightly more general case where A C Z d is a finite set and we let 

fx=Px{R(n)q!A,n>O} and gx=E0(~,=0 I{R(n)=x)), 

then by considering a = sup {n:R(n)EA ) we get, if  0 EA,  

(1.1) 1 =  Y. Lgx .  
x~_A 

In this paper we generalize those ideas to the case where A is random. I fA  

is a fixed finite set with m points and we choose one of  the sets A - x = 

{ y - x : y CA ), with x CA at random with probability 1/m for each translate 

(1.1) gives 

(1.2) E(foG) = 1, 

where G = Z~A g~ (here the E refers to expectation with respect to the uniform 

probability measure on ~ = (A -- x : x EA )). I f  we consider more general 

measures on the set A we can get further generalizations of  (1.2). 

One motivat ion for this lies in the study of  intersections of  random walks. I f  

R~(n) and R2(n) are independent  simple random walks starting at 0, one is 

interested in estimating 

f(n)=P{R~(i) ~ R2(j), 0 < i  - n, 0 < j  =< n}. 

We might hope to solve this kind of  problem in this context, using the r andom 

set A = {R~(i), 0 < i < n )  and R = R 2. Unfortunately this does not  seem to 

work. The problem that arises is that the measure on A is not translation 

invariant,  i.e., A and A - x do not have the same probability for x EA.  

The ideas o f  (1.2) do apply to the random walk case i f  we choose A to be the 

path of  a "two-sided" random walk Rl(n), - ~ < n < ~ ,  with killing rate fl in 

each direction. In this paper we derive a generalization of  (1.2), Theorem 2.2, 

assuming essentially only that the measure on A be translation invariant  and 

symmetric  about 0, and that R is a symmetric  random walk. 

As an application of  the re,mlt we give a proof  of  the following: let R1, R2, R3 

be independent  simple random walks and 
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F(n )  = P(R~(i)  v ~ R3(j) , R2(i) v ~ Ra(j), 0 < i < n, 0 < j  < n) ,  

then there exist constants 0 < ca < c2 < o0 such that 

cln d/2)-2 < F(n )  <= c2n tam 2, d ---- 1, 2, 3, 

(1.3) lc~(log n ) - l  < F ( n ) < c 2 ( l o g n )  - l ,  d = 4, 
/ 
~c~ < F(n) ,  d > 5. 

We actually will give a p roof  only in the cases d = 2, 3. The case d = 1 can be 

handled easily using methods  from Chapter  3 of  Feller [5]. The d > 5 follows 

from the fact that simple random walks intersect only a finite number  of  t imes 

(see, for example, Erdos and Taylor [3]); and the d = 4 case was proved in 

Lawler [7] using ad hoc methods  very similar to those in this paper. The cases 

d = 2, 3 are also "well known",  and a similar but  not identical result follows 

from the work of  Felder and Frohlich [4], but  no proof  of  (1.3) seems to be in 

print. From (1.3) one easily gets (see Lawler [9]) 

CI n(d/2)-2 < f i n )  < ~21"l (d/4)-l, d = 1, 2, 3, 

cl(log n) - l  < f ( n ) < x / ~ z ( l o g n )  -L/2, d = 4 .  

For d = 4 it was shown in Lawler [8] that the right inequality is nearly sharp, 

i.e. that 

lim log f ( n )  _ 1 

, - ~  log log n 

For d = 1 it can be shown that f (n )  ~ c3n -~ so that neither inequality is sharp. 

It is believed for heuristic reasons (see Duplant ier  [2]) that the inequality is 

also not sharp for d < 4. In fact, for d = 2, it has recently been proved by 

Burdzy and Lawler [1] for some e > 0 

_ 3 < lim inf  - -  
n - - o o  

log f (n )  

log n 

< lim sup ~ l ° g  f (n )  < -- ½ - e ,  
, - ~  log n 

i.e. the inequality is not sharp. 

The p roof  of  (1.3) requires a little more work than Theorem 2.2. From 

Theorem 2.2, using the notat ion of  (1.2) we get essentially 
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E(FG) ~ I. 

It is also routine to show 

E(G) ,~  n 2-(d/2), d -- 2, 3, 

but care is needed to conclude from these facts that 

E(F) ~ [E(G)] -1. 

In this paper we also derive another identity, Theorem 2.1, by a similar 

argument. As an application of this we derive an estimate for the probability 

that a simple random walk with killing rate fl > 0 avoids a half line. This is 

closely related to a recent estimate of  Kesten [6] on the harmonic measure of a 

segment in Z 2 and in fact we could derive estimate (i) of that paper from our 

estimate. 

Throughout this paper we will use 0 < c, < c2 < oo to represent con- 

stants, independent of everything except dimension, which may vary from 

line to line. 

The author would like to thank the referee for useful criticisms of  an earlier 

version of  this paper and espe, cially for pointing out that one argument in that 

version was incomplete. 

2. Main theorems 

We let A (n) be a random two-sided sequence of points in Z d U { ~ } which is 

invariant under translations and time reversal. More specifically, A (n), n E Z, 

take values in Z d U { ~ } and satisfy 

(2.1) A (0) = 0; 

(2.2) i fn  > 0 and A(n) -- oo, thenA(m)  -- oo for m >_- n; 

(2.3) i fn  < 0 a n d A ( n ) =  oo, t h e n A ( m ) =  oo for m < n; 

ifx_m . . . . .  Xo,. • •, x. is any sequence of points in Z a U {oo}, 

P { A ( - m ) = X _ m , A ( - m  + 1) =X_m+, . . . . .  A(n - 1 ) = x . = l , A ( n ) = x . }  

= P { A ( -  n ) =  x . , A ( -  n + 1)--X._l . . . . .  A(m - 1)--X_m+,,A(m)=X_m} 

(2.4) 

and if - m < k < n with xk # 0% Xo = 0, 
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(2.5) 

P { A (  - m )  = x_ , . ,  A (  - m + 1) = x_. ,+l  . . . .  , A (n  - 1) = Xn_l, A ( n )  = x . }  

= P { A (  - m - k )  = y _ , , , ,  A (  - m - k + 1) 

= Y - , . + I  . . . . .  A ( n  - k -  1 ) = y . _ l , A ( n  - k) = y . }  

where 
Xj -- Xk, Xj ÷ 00, 

YJ = ~ ,  Xj = ~ .  

By a random walk R (n), n > 0, we will mean  a symmetr ic  walk with killing 

rate fl ~ [0, 1), taking values in Z d tO (-~}, i.e. 

(2.6) R(0) = 0, 

(2.7) P { R ( n  + 1) = ~ [ R(n )  = ~-)  = 1, 

(2.8) P ( R ( n  + l ) =  ~ - [ R ( n ) ÷ - ~ } - - p ,  

(2.9) P ( R ( n  - ~ l ) = x  ] R ( n ) =  y }  = ( 1  - f l ) # ( x  - y),  

where / t  is a probability measure on Z a sat isfying/t(x)  = p(  - x). Here ~ is a 

"cemetery  point" assumed to be different f rom the oo in the definition o fA.  I f  

R i, R 2 are independent  r andom walks with the same distribution (i.e. same fl 

and #) and we define 

= / R l ( n ) ,  n > 0 ,  
AR(n) ~R2(-- n), n < 0, 

then AR (n) satisfies (2.1)-(2.5). However,  not every A (n) satisfying (2.1)-(2.5) 
comes from such a r andom walk. 

We now assume we are given A ( n )  satisfying (2.1)-(2.5) on a probabili ty 
space (f~l, P0  and R ( n )  satisfying (2.6)-(2.9) on a different space (~2, P2). Let 
(f~, P)  = (~1 × f~2, Pt × e2). For  any set A c Z d, we let 

Es(A) = P2{co2 : R ( j ,  co2)q~A, 1 < j  < ~ ) .  

We define a number  of  sets and r andom variables on f~l, f~: 

J+ (wl) = Es[(A(k, w 0 : k  _-> n}], 

J.- (w0 = Es[(A(k, ¢o1) : k < n}l, 

J(o91) = J~(Ogl)  = J_+~(Ogl) , 

B. + = ((o91, o92) : R ( j ,  co2) ÷ A ( k ,  o;1), n < k < ~ ,  I _-<j < oo), 
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D+(oh) = indicator function of  the set (A(k,  coo ÷ 0, 0 < k < ~ } ,  

D - ( t o 0  = indicator function of  the set {A(k,  o91) # 0, - ~ < k < 0}, 

~,(tol, to2) = i n f { j  > 1 : R ( j ,  to2) = A ( n ,  to1)}, 

z(~01, to2) = inf{n E Z :  ~n(tol, to2) < ~ } .  

We now state the main results :in terms of  the above random variables. We use 

El to denote expectations with respect to PI. 

THEOREM 2.1. Suppose A is transient, i.e. 

Then 

P~ { 3 x ~ Z d with A (n) = x for infinitely many n ) = O. 

E,(D + J)  = E,(D + J~ J (  ). 

For x ~ Z ~ let THEOREM 2.2. 

g ( x ) =  ~ Pz{R( j ,  toz )=X}  and G(toO= ~ g ( A ( m ,  toO), 
j = 0  r n = - m  

where g (m)  = O. Then, i f  El(G) < ~ ,  

EI(GD+J) = 1. 

From the theorems we get the immedia te  corollary: 

COROLLARY 2.3. Suppose P1{A(n) = O for some n v s 0} = 0. Then 

(a) E l (J )  = E1(J6 ~ J+); 
(b) i fE , (G)  < or, then E,(GJ)  = 1. 

Note  that by translation invariance P~{A(n) = 0 for some n # 0} = 0 if  and 

only i fA has no double points, i.e. 

PI{A(n)  v s A ( m )  for all n < m,  A (n )  # ~ } = 1. 

Before proving these theorems, we do an example to show how they can be 

used. Suppose A(n)  is not ran~dom but  just  a line 

A(n)  = (n, O, 0 . . . . .  0). 

Actually, this does not satisfy (2.4); however,  we may instead suppose that  with 

probabil i ty ½, A(n)  = (n, 0, 0, . . . ,  0), n ~ Z ,  and with probabil i ty ½, A ( n )  = 
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( - n, 0, 0 . . . . .  0), n GZ.  Let R ( j )  be a simple random walk in Z d (d > 2) with 

killing rate fl E [0, 1). Then J ,  J0 +, J~+, G are not random. Corollary 2.3(a) gives 

P2{R(j)  # A ( n ) , j  >= 1, - oo < n  < oo} 

(2.10) 
= P2{R(j )  v~ A ( n ) , j  >-_ 1, n > O}Pz{R(j)  # A ( n ) , j  > 1, n < 0 } .  

Iff l  = 0 and d = 2, 3 both sides are zero. Otherwise we get a surprising fact: if 

V + = { o ) 2 : R ( j , O ) z ) # A ( n ) , n  >=O,j>= 1) 
and 

V-  = { o h : R ( j ,  C O z ) # A ( n ) , n < O , j  > 1}, 

then V + and V-  are independent  events! Corollary 3.2(b) gives 

1-1 P f f R ( j )  # A ( n ) , j  >= 1, - oc < n < oo} = P { R ( j )  = A(n)}  
j = 0  n=--oc 

(this can be proved other  ways). In particular by doing s tandard estimates on 

the RHS for d = 2, 3 we can get asymptot ic  expressions as/? ~ 0, 

t C~cfl, d = 2, 

(2.11) P 2 { R ( j ) # A ( n ) , j > I ,  - oo < n <,~c} ,-~ , d = 3 .  

tll-ogg~l 
Below we will show that 

Pz[R( j )  # A ( n ) , j  > 1, 1 <= n < oo} 

(2.12) 
<= 2dP2{R(j)  # A ( n ) , j  >- > _ 1,0=<n < o o } .  

This combined with (2.10) and (2.11) then gives: 

COROLLARY 2.4. There exist constants 0 < c~ < c2 < oo such that i fR  (n) is 

a simple random walk in Z a, d = 2, 3, with killing rate fl > O, defined on a 

probability space (~2, P2) and A is the half-line 

then 

A = { ( n , O ) : n > O } ,  d = 2 ,  

A = { ( n , 0 , 0 ) :  n _-_ 0}, d = 3 ,  

CI]~ TM __--< P 2 { R ( j ) q ! A , j  >-_ 1} _-< C2/~ TM, d = 2, 

Ct C2 
x / l log f l l  <=P2{R(j)q~A,j > 1} < ~  d = 3 .  
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This result is connected with the discrete harmonic measure of  the endpoint  
of  a line and with a little more work we could prove estimate (i) in Kesten [6]. 
To prove (2.12), let a ~ = i n f { j > l : R ( j ) = 0 }  and, for i > 1 ,  try= 
inf{j  > a~_~ : R ( j )  = 0}. Let 

A = s u p  { i "  tri < oo } .  

Then 

P{A = i, R ( j )  v ~ A ( n ) , j  > 1, 0 < n < oo} 

= P { a ~ < m , R ( j ) g : A ( n ) ,  t < j  < cr;, O < n  <oo}  

• P { R ( j )  ~ A ( n ) , O < j <  ~ , 0  < n < oo}. 

It is easy to see that 

2 d -  1 
P{at  < oo, R ( j )  ~ A(n ) ,  1 < j  < a~, 0 < n < oo} < - -  

= -- 2d 

Similarly, 

e { a i < o o ,  R( j )v~A(n) ,  1 < j  < a i ,  O < n  < oo} < [ 2 d - /  
= = \  2d 1 "  

Therefore, 

P { R ( j )  v~ A ( n ) , j  ::~ 1, 0 < n < ~ }  

= ~, P { A = i , R ( j ) - ~ A ( n ) , j  > l , O < n < o o }  
im0 

2 d - 1  i 
< ( - - - ~ )  P { R ( j ) * A ( n ) , J  > 1,0-<_n < ~ }  

i=0  

---- 2 d P { R ( j )  v ~ A ( n ) , j  >= 1, 0 < n < ~ } .  

PROOF OF TIiEOR~M 2.1. We will consider E ~ ( D - ( J o  - J ) ) .  Note that by 

(2.4), E ~ ( D - J o  ) = E~(D+J~),  E~(D-J )  = E~(D+J). Let  

Then 

(2.13) 

Cn = {(tol, to;,)- z(tol, toz) = n, D- ( to0  = 1}. 

E , ( D - ( J (  - J))  = ~ P(C, ) .  
n E l  
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Let Cn, j = {(091,092)~:--Cn" ~n(091, 0)2) = J } .  Then for n, j >_- 1, (091,092)~ Cn,j if  
and only if  

(a) A ( m ,  091) 4= O, -- oo < m  < 0 ,  

(b) R ( j ,  092) = A(n ,  cot), 

(c) R ( k ,  o92) 4= A(n ,  091), 1 <-_ k < j ,  
(d) R ( k ,  o92) 4= A ( m ,  091), 1 <- k <=j, - oo < m < n, 

(e) R ( k ,  092) 4= A ( m ,  091),J < k < oo, - ~ < m < n. 
For fixed j ,  n we write 

and 

Rl(k ,  o92) = R ( j  - k,  092) - R ( j ,  092), 

R 2(k, 092) = R ( j  + k, 092) - R ( j ,  092), 

O < k < j ,  

0 < k < ~ ,  

71(m,091)=A(n - m,  0 9 0 -  A(n ,  09,), - oo < m  < o 0 .  

(In these definitions, we use the rules oo = - oo = x + oo = x - oo and simi- 

larly for ~ . )  

Again suppose (09l, 091)EC,,j. Then (b) and (d) imply that A ( m ,  091)4= 
A (n, 091) for - oo < m < n or 

(a)' A(m,  090 4= 0, 0 < m < o0. 
Similarly (b)-(e) give 

(b)' R l(j, 6.02 ) = A(n ,  090, 
(c)' Rl(k ,  092) ./=A(m, 091), 1 <= k < j ,  0 <= m < n, 
(d)' Rl(k ,  092) =/=A(m, 091), 1 < k = j ,  n < m  < 0% 
(e)' R2(k, o92) 4= A ( m ,  090, 0 < k < oo, 0 < m < oo. 

Moreover,  (09t, 092) ~ C , j  if  and only if  (a)'-(e)'  hold: hence 

P(C,,j) = P{(a) ' - (e) '  hold}. 

For  fixed n, j ,  (2.1)-(2.5) say that A has the same distr ibution as A and 
(2.6)-(2.9) say that R ~, R 2 are independent  r andom walks with the same 

distr ibution as R.  (We note that the latter claim uses the fact that  for 

(09t, (-02) ~ C.,j, R ( j ,  o92) =/= -~.) Therefore P(C,,j) = P(Cn,j) where C,,j is the set 
o f  (09~, o92) satisfying 

(a)" A(m,091)=/=O, O < m  < ~ ,  
(b)" R t(j, o92) = A (n, 091), 

(c)" Rl(k ,  092) 4= A ( m ,  090, 1 ~ k < j ,  O < m < n, 

(d)" Rl(k ,  ¢02) 4: A ( m ,  091), 1 < k < j ,  n < m < o% 

(e)" R2(k, 092) 4= A ( m ,  091), 0 < k < ~ ,  0 < m < 00. 
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Let 

r/(o9¿, 092) = i n f { j  > 1 : Rl ( j ,  co2) = A ( n ,  090 for some n ~ 0}, 

a(o91, o92) = sup {n : RI(r/, o92) = A ( n ,  ogt)}. 

Then  {(b)"-(d)"} = { t / = j ,  a == n}. Since R 2 is i ndependen t  o f  R l, we get 

P(C'nj) = El(D+J~-I{rl = J ,  a = n}), 

where  I denotes  ind ica tor  funct ion.  S u m m i n g  over  n and  j we get 

n = l  j = l  n = l  

where [ { a  = n )  = E ( I { a  = n) I ogl). But  

[ { a = n } + J g  + i ( a = o o ) = l .  
n = 0  

Since A is t ransient ,  P{a  = oo} = 0, therefore  

~, [{,7 = n } + JJ- = l a.s. 
n=O 

Hence  by (2.13) 

E l ( D - ( J o  - J)) = E~(D+J+(1 - [{cr = 0} - Jo+))- 

For  fixed cot with D +(coo = 1, s t andard  Markov  t ime  a rgumen t s  give 

j , + ( o g , )  = + = 0 ) ( o g , ) j , + ( o g , ) .  

Hence  

Et(D - Jo ) - L I(D - J) = EI(D + J~- - D + J~- J+ ). 

But as m e n t i o n e d  before,  E t ( D - J o ) =  EI(D+J~ -) and  E t ( D - J ) = E ~ ( D + J ) .  
Therefore  

Et(D +J) = Et(O +J~-J+). 

PROOF OF THEOREM 2.2. Let  

q(o9t ,o92) = sup { j  > 0 : R ( j ,  o92) = A(n,  090 for some  - ~ < n < ~ } ,  

a(o91, o92) = sup{n  > 0 : R(r/ ,  o92) = A ( n ,  coO). 

We first note  tha t  P { t / <  o0, l a l  < o0} = 1. (Assume not,  then  i f  
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H(091,092)= ~ ~ l { R ( j ,  092)=A(n,091)}, 
n = - ~  j = 0  

P ( H  = ~ }  > 0 and hence E(H) = ~ .  But E(H) = El(G) < ~ . )  Therefore 

,=i i 
j = 0  n = - - ~  

Let B,,j = { r / = j ,  a = n}. Then (09~, 092)EB,,j if  and only if  

(a) A(n,  wl) = R( j ,  090, 

(b) A(m,  091) v~ A(n,  090, n < m < ~ ,  
(c) R(k ,  092) ~ A(m,  090, j < k < ~ ,  - ~ < m < ~ .  

For fixed n, j we define R 1, R 2, ~ by 

R~(k, 092)= R ( j  - k, 092) - R( j ,  09z), O <= k <=j, 

R2(k, o92) = R ( j  + k, o92) - R( j ,  w2), 0 _-< k < Go, 

A ( m , 0 9 0 = A ( n + m , 0 9 0 - A ( n , 0 9 0 ,  - ~ < m < ~ ,  

with the same conventions about ~ and ~- as in the previous proof. Then (a), 

(b), (c) are equivalent to 

(a)' R 10,092) = A( - n, 091), 

(b)' .~(m, 090 ~ 0, 0 < m < ~ ,  
(c)' RZ(k, 092) ~ .,~(m, co), 0 < k < ~ ,  - ~ < m < ~ .  

Again we use (2.1)-(2.9) to conclude that if/~,,j = {(a)"-(c)" holds} where 

(a)" nl ( j ,  o92)=A( - n, o91), 

(b)" A (m, 090 ¢ 0, 0 < m < ~ ,  
(c)" RZ(k, 092) ~ A(m,  090, 0 < k < ~ ,  - Go < m < ~ ,  

then P(B,,j) = P(B,,j). Since R 1 and R 2 are independent  we get 

1 = ~ ~ P{(a)"-(c)" hold} 
n = - c e  j = O  

=EI(D+(090J(091) ~ ~ P2{R(j, 092)=A(n,09L)}) 
n = - ~  j = 0  

=E1(D+JG). 

The proof  of  Theorem 2.2 can be used to give a more general result which we 

X ce will need. Let { , } ,=_~  be a sequence of  points in Z d tO {~}  with x0 0. I f  

Xk v~ ~ we define 
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X.+k -- Xk, X.+k ~ 00, (Tkx). 

We call a function ¢I) on sequences invariant  under  translations if  ¢ ( T k X )  = 

• (x) whenever  xk ¢= ~ .  Then 

COROLLARY 2.5. I f  ¢ is a bounded funct ion on sequences, invariant under 

translations, and  i f  E~(G) < oo, then 

EI( GD + Jdp(A )) = El(alp(A)). 

As in the above theorem, i f  B ,  d,a,b = { r 1 = j ,  a = n,  a < ¢P < b} we 

Z d and let 

Hi[0, N] = {Si( j )  : 0 _-<j < N}, 

and 

I-I,(0, N]  = {S ' ( j )  : 0 < j  <= N }  

F ( N )  = P{I-II(0, N] O (1-1210, N] L) I-I310, N]) = ~ }. 

In the next two sections we prove: 

THEOREM 3.1. There exist constants 0 < cl < c2 < oo such that 

c l N -  1:2 < F ( N )  < c2N- 1/2, d = 3, 

c l N -  1 < F ( N )  < c2N- i, d = 2. 

PROOF. 

get 

P{a<@'-~b} = ~ ~ P(B,j,=,b). 
j=0  n = - o o  

Since tl)(A) = ¢I)(A) we get 

P(Bnd,a,b) = P{(a)"-(c)"  hold, a < • < b}, 

and summing over  all n, j gNes 

P{a  < ¢P < b} = EI(D+JG I(a < dp < b)). 

Since this holds for every a < b, the corollary follows. 

3. Upper bound for F(N) 

Let S 1, S 2, S 3 be independent  simple random walks starting at the origin in 
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This section will be devoted to showing how the results of  §2 can be used to 
prove the upper bound. 

In the notation of the previous section we let A(n) be a two-sided simple 
random walk with killing rate fl = fin = 1/N, and R(n)  a third walk indepen- 
dent of A also with killing rate fiN. In other words, if we let t~ ~, ~2, ~3 be random 
variables with 

independent  of  S 1, S 2, S 3, as well as each other, we may choose 

S2(n), 0 _-< n =< ~2, 

A ( n ) =  1 S 3 ( - n ) ,  -~3__<n__<0, and R(n)=lSX(n)'i~, otherwise,0--<n--<~l' 

Loe, otherwise, 

and then A (n) and R(n)  satisfy (2.1)-(2.9). We assume that S ~ is defined on 
(f~2, P2); S 2, S 3 defined on (fl~, P0; and (f~, P) -- ( ~  X f~2, PI X P2) as in §2. 

Let ~(~o~) = ~2(~1) + ~3(co~) -- 1 and let K~, K2, K3 be the indicator functions 
of  the events 

respectively. Note that for N ~ 100, K2K3 N 1(1, and that q~ in invariant under  
translations. It is easy to see that 

(3.1) lira inf  E(K2K3) ~ c1. 
n ~ c o  

Let 
G_(COl) -- inf  Gk(~ol) 

- ~ < k < o o  

where G k ( O ) l )  = <30 i fA(k,  COl) = ~ and otherwise 

Gk(to,) = ~ g(A(m + k, toO - A(k,  og~)), 
m ~ - - o o  

where g is as in Theorem 2.2. Note that G_ is invariant under  translations and 
hence so is G_K~. By Corolllary 2.5, for any a ~ R  

EI(GJD + I { q  = a }K~) = E~(K~I [ q = a }). 
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But G >_- a on the set { G_ = a },. hence 

E ~ ( J D + I { q  = a}KO = -  < 1 E l ( K f l { q  = a}), 
a 

or, by integrating on a (since there are only a countable number  of  finite 

random walk paths, G_ takes on only a discrete number  of  values so we are 

really summing), 

(3.2) EI(JD+KO < E,((G_ ) - 'KO.  

A standard estimate using the local central l imit theorem (see e.g. Spitzer 

[ 10]) gives 
Ixl 2 
Y~ p { S 2 ( n ) = x }  >Cl( [x l - (a -2 )^  1). 

n=O 

Since a random walk with killing rate fl = I /N  has probability (1 - f l ) I , I  = of  

taking at least Ix 1 2 steps we get 

where 

I f  we let 

g(x) >= Cl(1 - -  f l ) Ixl2([X I - ( d - 2 )  A 1)  

Clh(X) 

h (x) == e-lxl=/N(i x i-ca-z)A 1). 

tS 2(n, 091), n > 0, 
S(n ,  090 = [$3( _ n, 090, n < 0 

then i f  N/100 _< 0(090 _< N/20, 

N 
inf  

1 0 0  - Nao__< i, j_-< N/2o 
q(09,)_->-- 

Hence if  we define 

P(091) = sup 
- N / 2 D  < i , )  <-_ N / 2 0  

H(091) = inf  
- -  N I 2 0  < i ,  j < N / 2 0  

then 

g(S( i ,  09,) - S ( j ,  o9,)). 

IS(i ,  09,) - S ( j ,  o91)1, 

h(S( i ,  091) - S ( j ,  09,)), 
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(3.3) E,(G_ - 'K , )  <= c 2 N - ' E , ( H - ' )  < c2N-'E~(e-e'mpd-2). 

But the central l imit  theorem and reflection principle give for r > 0 

P ( p  >= r x / ~  } < P sup S(i )  - S > r 
UI <=N/20 

suo 
t O<=i <=NIlO 

{ (10)  r - - ~ }  C 2 exp { - 5rZ]c . 4 2  < 2P S N > < J 

Hence 

EI(e-P21Np a- 2) ~ C2 N(a- 2)I2. 

Combin ing  this with (3.2), (3.3) and the est imate K2K3 <= Kl, we get 

(c N -  1/2 
(3.4) E,(JD+K2K3) < ~ 2 , d = 3, 

= [C2 N - l ,  d = 2. 

By (3.1), 

E,( JD+K2Ks) = P{K2K3 = 1}EI( JD + I K2K3 = 1) 

>= c,&( Jl, oO,,5o) 

where 

J.(og,) = Pz{ S~(j, o92) v~ S(k ,  co,), - N <- k < N,  0 < j  <= aN},  

D . (~ , )  = I{S2(k,  o9,) ~ O, 0 < k <= aN}.  

Therefore,  (3.4) implies  

(3.5) Ic2N - ,/2, d = 3, 

E,(.]D) <= [c2 N-~,  d = 2, 

where J = J,, D = D,. It remains  to prove the est imate for E, (J )  = F(N).  

Let a0 = 0 and for i > 0, 

Let 

ai = in f{m > a i_ t :S2(m)  = 0}. 

A = sup{n  : a~ < N } ,  



128 G . F .  LAWLER Isr. J. Math. 

and let B. ,  I'm be the indicator functions of  the events (A = n }, {% = m }, 

respectively. Let L .  be the indicator function of  the event 

{ q e , [ e l  -- 1, S2(j,, o91) ~ e, f o r j  = trr + 1, 0 < r < n } .  

Since returns to the origin are independent ,  and S(ar + 1) is a point  o f  

norm one, 

(3.6) E(L,,) < / | 2 d  1~,-1 I 

= k  2d  / " 

Let 

Jm(ogO = PE{SI(j, oh) ÷ S(k,  tot), 0 < j  = < N, - N =< k =< 0 or N - m < k _-< N) ,  

15m(o9~) = I { S ( k ,  o9~) ~ O, N - m < k < N}.  

Then B.Vm = I {a ,  = m }Dm. Clearly i fA c Z d contains all the points  o f  norm 

one, then a random walk starting at 0 hits A. Also, given S(0) = S ( m )  = O, 

{S( j )  : 0 _-<j _-< m} and {S( j )  • - N -<_j _-< 0, m _-<j _-< N} are independent .  We 

then get, using (3.5) and (3.6),, 

E~( JB,,Vm) < E~(.]I{a. -- m }Dm) 

(3.7) < E l ( I (~  n = m )L.Jm15,,,). 

< C2Pl{Crn = m } ( N -  m)(a-+)/2( 2 d -  
= \ 2 d  l " 

For d = 3, we need only the s tandard est imate 

e~{% > N/2}  ~<= PI{S( j )  = 0 for s o m e j  >= N/2}  

:<__ C2 N -  1/2, 

to conclude 

/q N 
E,(Y)= X Y, E,(YB.V,.) 

m-O n-:O 

<= c2(N/2)-  I/2pI{o" a < NI2} + P{% >= N/2} 

< c N-v::. 2 

For d -- 2 we need the estimate 
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(3.8) P{a .  = m}  < 
C2 n2 

m(log m) 2 ' 

which we prove below. Using (3.8), we get 

El (J )  <= c2 
m~O n~O 

m S 0 ,  

To prove (3.8), let X i = a i - a i _ L .  Then XL, X 2 , . . . , X n  are i.i.d. 
random variables and P{an = m }  = P{XL + • • • + X, = m}. We first derive 

the estimate 

(3.9) P(X1 = k} < c2k-L(log k ) - l .  

To prove this consider q( j ,  x )  = P { S ( j )  = x; S( i )  ~ O, 0 < i < j /2} .  Then by a 

standard estimate and the Local Central Limit  Theorem, 

q( j ,  x )  < e ( s ( i )  -¢ O, 0 < i < j / 2 }  sup P { S ( j )  = x [S([j/2]) = y} 
y 

< c2(log k) - Lk- 1. 

For  k even, by splitting the path into two pieces and reversing time, 

<= P{aA= N}  + c2 
m=l .=o m( logrn)  a N -  m 

+ c2 P{a,, = 0} - -  
n = o  N 

N-I 1 
< c2N-1 + c2 ~ + c2N-I 

m=l re(log m)2(N -- m )  

< c2N- 1. 

But since 

x~q , X < c2(log k ) - I  and q , < c2( log  k ) - l k - 1 ,  

a simple argument gives (3.9). The inequality for (3.8) is obvious  i fn  > m TM, SO 
we may assume n < m 3/4. Then, 

( )nl 
P{o',, = m} { ( N - -  m ) - l ^  1} 
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P ( X ,  + . . .  + X ,  = m )  

~--__ ~ P(XI-}- ". , -~ Xn = m , X j ~ _ ~ m / n }  
j = l  

= riP(X1 + • • • + X~ = m ,X~  > m / n )  

< n P ( X ,  + . . .  + X n = m  [ X z + . - . + X n < - _ m - m / n }  

<= QnZm -l(log m)-2 

4. Lower bound for F(N) 

The main result needed for the lower bound is the following proposi- 

tion which essentially states that a random walk path for d = 2, 3 has 

positive capacity. Proofs can be found in Erd6s and Taylor [3] or Felder and 

Frohlich [4]. 

LEMMA 4.1. There exists a cl > 0 such that i f  S and S 2 are independent 

random walks starting o f  O ai~d x respectively with [ x I <= 2N~/2 and  

= (S( - N, N) A $2(0, N) ~ ~ }, 

then 

P(~) >= c,. 

We need a slight improvement on this. 

LEMMA 4.2. Let  

A = ( S ( -  3N, 3N) A $2(0, N) = ~ }, 

B = ((S( - 3N, - 2N) U S (2N ,  3N)) A $2(0, 2N) = ~ }, 

C = {S( - N, N) (~ $2(0, 2N) ~ ~ }. 

Then there exists a constant .:1 > 0 such that if½N ~/2 < Ix I < N ~n, 

l iminf  P(A N B • C) > c~. 
N~-cc 

PROOF. Let 

D , = ( I S ( j ) - x l  > 3 r N " 2 , - N  <=j <=N}. 

Then 
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lim lira inf  P(Dr)= 1. 
r ~ 0  N ~  ::c 

(This can be seen from the invariance principle and the fact that Brownian 

motion does not hit points for d _>- 2.) Hence by Lemma 4.1 there is an r > 0 

such that 

l i m i n f  ( inf  P ° ' V ( D r N ( S ( - N , N )  NSZ(O,N)~  Z } ) ) >  q,  
N ~ c  l Y -  ~1 _-<rb?/2 

where p0,~ indicates probabilities assuming S(0) = 0 and $2(0) = y. If  

Lr = { t SZ(j) - x l < rN '/~, 0 < j  < N},  

P(Lr) > q and by a standard Markov argument we get 

If  

then 

lim inf  P(Lr N C N Dr) ~ Cl. 
N~zc  

MR = {IS2(j)[ < R N  ~/2, O <=j <= 2N} 

and hence for some R < 

lim lim inf  P(MR)= 1 
R ~  N ~  

lim inf  P(Lr N C n Dr N MR) >= Cl. 

Finally, if  

Q = {IS(j)[ > 2RN Ln, 2N < IJf <= 3N; I S ( j ) - x l  >= 2rN ~/2,N <= ]Jl <= 3N}, 

then 

E(IQ I S ( j ) , -  N =<j < N) => c~ 

on Dr, and hence 

P ( L  r N C nDr  NMR n Q ) >  q.  

ButA N B N C ~ L r N C N D r n M R n Q s o t h e l e m m a i s p r o v e d .  

PROOV OF TXE LOWER BOUND. If  S(0) = 0, $2(0) = x let 

z = inf{j  >_- 0 : S2( j )ES(  - 3N, 3N)}, cr = sup {k _-< 3N: S(k)  = S2(z)}. 

Then Lemma 4.2 gives that 
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2_~N 2N (4.1) X X 
xEZ a j k = - 2N 

P°~'(z = j ,  a = k ) )  > q N  d/2. 

But for a fixed j ,  k, with N < . / <  2N, - 2N _-< k < 2N, by reversing paths we 
can see that 

P°'~{z = j ,  a = k} < F(N), 
xeZ d 

and hence 
2N 2N 

(4.2) E Y, E 
k=-2N j~N x ~  f 

P°'X{z = j ,  a = k} < c2N2F(N). 

The lower bound follows flora (4.1) and (4.2). 
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