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ABSTRACT
Two general theorems about the intersections of a random walk with a
random set are proved. The result is applied to the cases when the random set
is a (deterministic) half-line and a two-sided random walk.

1. Introduction

Let R(n), nE€Z,, denote a random walk taking values in Z¢ as in Spitzer
[10], with killing rate # €(0, 1), starting at 0. Then it is well known that if

f=PyR(n)#0,n>0} and g=E0(§ I{R(n)=0}),

n=0
then fg = 1. To see this we need only consider the last hitting time o,
o =sup{n: R(n)=0},
and note that
P{oc=n}=P{R(n)=0;R(j)#0,j>n}
=P{R(n)=0}/,

and hence
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1= ) P{o=n)}
-0

n=

-7

n

1 b8

P{R(n)=0} = fg.
0
If we take a slightly more general case where 4 C Z¢ is a finite set and we let
fi=P{R(n)gA4,n>0} and g = E0< Y I{R(n) =x}> ,
n=0

then by considering ¢ = sup{n: R(n)EA} we get, if 0€4,
(1.1) 1=3 f&:-

xX€EA
In this paper we generalize those ideas to the case where A is random. If A
is a fixed finite set with m points and we choose one of the sets 4 —x =
{y —x:y€A}, with x €4 at random with probability 1/m for each translate
(1.1) gives

(1.2) E(£G)=1,

where G = X ¢, g, (here the E refers to expectation with respect to the uniform
probability measure on Q= {4 —x:x&€A4}). If we consider more general
measures on the set 4 we can get further generalizations of (1.2).

One motivation for this lies in the study of intersections of random walks. If
R,(rn) and R,(n) are independent simple random walks starting at 0, one is
interested in estimating

Sin)=P{Ri(1#Ry(j),0<i=n,0<j=n}.

We might hope to solve this kind of problem in this context, using the random
set A ={R\(i),0<i =n} and R = R,. Unfortunately this does not seem to
work. The problem that arises is that the measure on A is not translation
invariant, i.e., 4 and A — x do not have the same probability for x €A4.

The ideas of (1.2) do apply to the random walk case if we choose A4 to be the
path of a “two-sided” random walk R,(n), — o0 < n < oo, with killing rate S in
each direction. In this paper we derive a generalization of (1.2), Theorem 2.2,
assuming essentially only that the measure on A4 be translation invariant and
symmetric about 0, and that R is a symmetric random walk.

As an application of the result we give a proof of the following: let R,, R, R;
be independent simple random walks and
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F(n)=P{R(i) # Ry(J), Ry(i) # Ry()), 0=i =n,0<j = n},

then there exist constants 0 < ¢, < ¢; < oo such that

en9D=2 < F(n) < cnt@?-2, d=1,2,3,
(1.3) clogn) ' S F(n)=clogn)™!, d=4,
¢, = F(n), dz=5.

We actually will give a proof only in the cases d = 2, 3. The case d = 1 can be
handled easily using methods from Chapter 3 of Feller [5]. The d = 5 follows
from the fact that simple random walks intersect only a finite number of times
(see, for example, Erdos and Taylor [3]); and the d = 4 case was proved in
Lawler [7] using ad hoc methods very similar to those in this paper. The cases
d =2, 3 are also “well known”, and a similar but not identical result follows
from the work of Felder and Frohlich [4], but no proof of (1.3) seems to be in
print. From (1.3) one easily gets (see Lawler [9])

n 9"t < fin) < \/Zzn(d/4)—1, d=1,2,3,

c(logn) '= fn) = \/—c_z(log n)y~"2  d=a4.

For d = 4 it was shown in Lawler [8] that the right inequality is nearly sharp,
i.e. that

ol fn)

im —— =
n~x loglogn

For d = 1 it can be shown that f(n) ~ ¢;n ~! so that neither inequality is sharp.

It is believed for heuristic reasons (see Duplantier [2]) that the inequality is

also not sharp for d < 4. In fact, for d = 2, it has recently been proved by

Burdzy and Lawler [1] for some ¢ >0

!
_ 3 < Jim inf 128/
n~wo  logn

log f(n) _ |

= lim sup 1—¢,

n—o log n

1.e. the inequality is not sharp.
The proof of (1.3) requires a little more work than Theorem 2.2. From
Theorem 2.2, using the notation of (1.2) we get essentially
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E(FG)=1.
It is also routine to show
E(Gy=n*"92  4=213,
but care is needed to conclude from these facts that
E(F)=[EG)]".

In this paper we also derive another identity, Theorem 2.1, by a similar
argument. As an application of this we derive an estimate for the probability
that a simple random walk with killing rate § > 0 avoids a half line. This is
closely related to a recent estimate of Kesten [6] on the harmonic measure of a
segment in Z? and in fact we could derive estimate (i) of that paper from our
estimate.

Throughout this paper we will use 0<c¢, <c¢,<oo to represent con-
stants, independent of everything except dimension, which may vary from
line to line.

The author would like to thank the referee for useful criticisms of an earlier
version of this paper and especially for pointing out that one argument in that
version was incomplete.

2. Main theorems

We let A(n) be a random two-sided sequence of points in Z¢ U {0} which is
invariant under translations and time reversal. More specifically, A(n), n €Z,
take values in Z? U {0} and satisfy

2.1 A(0)=0;

2.2) if n>0and A(n) = oo, then A(m) = oo form = n;
(2.3) if n <0and A(n) = oo, then A(m) = o form = n;
if X_p, ... X, ..., X, 1s any sequence of points in Z¢ U {0},

P{A(—m)=x_,,A(—m+1D)=x_p,y,...,A(n —1)=x,_,,A(n) = x,}

=P{A(_ n)=xn’A(— n+ 1)=xn—1’ o ’A(m - 1)=x—m+1,A(m)=x—m}
(2.49)

and if —m =k =< nwith x; # o, x,=0,
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P{A(_m)::x—m’A(_m + 1)=x—m+1’ i -aA(n - l)=xn—lsA(n)=xn}
2.5 =P{A(—m—k)=y_n, A(—m—k+1)
=V-m+1r--- ,A(n —k— 1)=yn—1aA(n —k)=yn}

where
y, = Xj — Xg, X; # o0,
J
o, x}' = 0.

By a random walk R(n), n = 0, we will mean a symmetric walk with killing
rate B €[0, 1), taking values in Z¢ U {0}, i.e.

(2.6) R(0)=0,

(2.7) P{R(n+1)=5|R(n)=} =1,

(2.8) P{R(n+1)=|R(n) # 3} =4,

2.9) P{R(n+1)=x |R(n)=y}=(1 - Pu(x —y),

where u is a probability measure on Z¢ satisfying #(x) = u( — x). Here o is a
“cemetery point” assumed to be different from the co in the definition of 4. If
R! R? are independent random walks with the same distribution (i.e. same
and u) and we define
1
R*(— n), n=0,

then Ag(n) satisfies (2.1)~(2.5). However, not every 4 (n) satisfying (2.1)-(2.5)
comes from such a random walk.

We now assume we are given A(n) satisfying (2.1)-{2.5) on a probability
space (Q,, P,) and R(n) satisfying (2.6)—(2.9) on a different space (X,, P,). Let
(Q, P)=(Q, XQ,, P, X P,). For any set A C Z¢, we let

Es(4)=P{w,: R(j,w))¢A4,1 =j<oo}.
We define a number of sets and random variables on Q', Q:
J.f (@) =Es[{A(k, w)): k = n}],
J (wy) =Es[{A(k, w,): k =n}],
J(w) =Jg (@) =T (@),

B ={(w), w): R(j, ) # Ak, w)),n Sk <ow,1=j <0},
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D*(w,) = indicator function of the set {A(k, w,) # 0,0 <k <0},
D~ (w,) = indicator function of the set {A(k, w,) # 0, — 0 <k <0},
&y, w)=1nf{j =z 1:R(j, w)=A(n, w)},

(0, W) =inf{n€ZL: ¢ (v, w;) <0}

We now state the main results in terms of the above random variables. We use
E, to denote expectations with respect to P;.

THEOREM 2.1. Suppose A is transient, i.e.
P{ 3x EZ4 with A(n) = x for infinitely many n} = 0.
Then
ED*])y=E(D*JSJ7).

THEOREM 2.2. For x€E€Z¢ let

8@ =3 P(RG @) =x} and G)= T glatm ),
where g(0) = 0. Then, if E(G) < o0,
E(GD*J)=1.

From the theorems we get the immediate corollary:

CorOLLARY 2.3. Suppose P,{A(n)=0 for some n # 0} =0. Then
(@) E(J)=E(JS JI);
(b) if E(G) < o, then E\(GJ)= 1.

Note that by translation invariance P,{4(n) = 0 for some n # 0} = 0 if and
only if A has no double points, 1.e.

Pi{A(n)# A(m)foralln <m,A(n)# o} =1.

Before proving these theorems, we do an example to show how they can be
used. Suppose 4(n) is not random but just a line

An)=(n,0,0,...,0).

Actually, this does not satisfy (2.4); however, we may instead suppose that with
probability 3, A(n)=(n,0,0,...,0), nE€Z, and with probability 3, A(n) =
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(=n,0,0,...,0), nE€Z. Let R(j) be a simple random walk in Z¢ (d = 2) with
killing rate f €[0, 1). Then J, J5', J;", G are not random. Corollary 2.3(a) gives

P{R(j)#A(n),j=1, —o<n<w}
(2.10) =P{R(j)#An),jz1,n 2 0}P,{R(j)#A(n),j=1,n <0}.
If § = 0and d = 2, 3 both sides are zero. Otherwise we get a surprising fact: if

Ve ={w: R(j, w)) # A(n),nz0,j 21}
and
V- ={w,:R(j, w) #A(n),n <0,j = 1},

then V'* and V'~ are independent events! Corollary 3.2(b) gives

PARG)#A(),j 21, —co<n<ow}=| 5 5 P{RG)=Am)}|

Jj=0 n=-x

(this can be proved other ways). In particular by doing standard estimates on
the RHS for d = 2, 3 we can get asymptotic expressions as § — 0,

C\/B, d=2,
Q.11)  PAR()#A(n),jZ1, —w<n<w)~1
llog 81’

Below we will show that

PA{R(j)#An),jz1,1=2n<w}
(2.12) =2dPy{R(j)#A(n),j=z1,0=n<w}.
This combined with (2.10) and (2.11) then gives:

COROLLARY 2.4. There exist constants 0 < ¢, < ¢, < oo such that if R(n) is
a simple random walk in Z°, d = 2, 3, with killing rate B > 0, defined on a
probability space (Q,, P,) and A is the half-line

A={(n,0):n=0}, d=2,

A={(n,0,0):n =0}, d=3,
then
aBf=PR()EA,jzZ 1} =, p",  d=2,

S <P(R()EA, ) =—2, d=3.

{log | ~JlogBl’
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This result is connected with the discrete harmonic measure of the endpoint
of a line and with a little more work we could prove estimate (i) in Kesten [6].
To prove (2.12), let o,=inf{j =1:R(j)=0} and, for i>1, ¢, =
inf{j >a;_,: R(j)=0}. Let

A=sup{i:0;, <}
Then
P{A=i,R(j)#A(n),jz1,0<n<w}
=P{o;<wo,R{(j)#A(n), 1 =j=06,0<n<w}
-P{R(j)#A(n),0<j<00,0=n<ow}.

It is easy to see that

2d —1
P{o, <o, R(j)#An),1=2j=0,0<n<ow} = Y

Similarly,

2d — 1\i
P{ai<oo,R(j)¢A(n),1§f§"i’0<"<w}é( 2d )
Therefore,

P{R(j)# A(n),j z1,0<n <o}

=3 P{A=i,R()#A(n),j=1,0<n<w)

i=0

= (2d —1\i _ , -
=i§0 (—27—) P{R(j)#A(n),jZ1,0=n < 0}

—2dP{R(j)# A(n),j 21,0 = n < ).

PrOOF OF THEOREM 2.1. We will consider E(D~(J; — J)). Note that by
4, E(D"J;)=ED J), E(D"J)=E(D*J). Let

Cn = {(wb w;i) . T(C(),, wZ) =n, D_(wl) = 1}-

Then
(2.13) E(D (Jy —J))= }El P(C,).
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Let C, ;= {(w), @) EC,: &, (w;, w;)=j}. Then for n, j = 1, (w,, w,))EC, ; if
and only if

@ A(m,w)#0, —oo<m <0,

(b) R(j, wy) =A(n, w),

(©) Rk, w) #A(n, w), 1 =k <J,

(d Rk,w)#A(m,w)), 1 =k =j, —oc<m<n,

(&) Rtk,w)) #A(m, w)),j <k <o, —co<m<n.
For fixed j, n we write

R'(k, w,) =R(j — k, w,) — R(j, w,), 0=k=j,
R¥k, wy)=R(j + k, w,) — R(j, wy), 0=k <o,
and
A(m, w)=A(n —m, w,) — A(n, w,), —0<m< .

(In these definitions, we use the rules oo = — 00 = x + 0 = x — o0 and simi-
larly for o0.)

Again suppose (@, w;)€C, ;. Then (b) and (d) imply that A(m, w,) #
A(n,w) for —oo<m<nor

@y Am, ) #0,0<m < c0.
Similarly (b)-(e) give

(bY R'(j, wp)=A(n, wy),

¢y Rk, w)#A(m,w),1=k<j,0=m=n,

@y R\k,w)#A(m,w), 1 =k =j,n<m< o0,

(€)Y R¥k,w)# A(m, w,),0<k <o, 0<m < 0.
Moreover, (w,, w,) € C, ; if and only if (a)—(e) hold: hence

P(C,;) = P{(@Y~(ey hold).

For fixed n, j, (2.1)-(2.5) say that 4 has the same distribution as 4 and
(2.6)—-(2.9) say that R!, R? are independent random walks with the same
distribution as R. (We note that the latter claim uses the fact that for
(v, 9)EC, ;, R(j, w;) # 0.) Therefore P(C, ;) = P(C‘,,,j) where C',,,j is the set
of (w,, w,) satisfying

@) Aim,w)#0,0<m< o0,

()" R'(j, w)) =A(n, wy),

() R(k,w)#A(m,w), 1 2k <j,0=m=n,

d)” Rk, w) #Am,w), 1 =k =Zj,n<m< o,

€ R¥k,w,))#A(m,w), 0<k <o0,0<m< oo.
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Let
n(w,, w,) = inf{j = 1 : R'(J, w,) = A(n, w,) for some n = 0},
o(m,, ) =sup {n: R(n, w) =A(n, w,)}.
Then {(b)”~(d)”} = {# =, 0 = n}. Since R? is independent of R!, we get
P(C,))=E(D I I{n=j,0 =n}),

where I denotes indicator function. Summing over #n and j we get

I B4 8

PG =E (00§ Io=ny),

n=1 j=1

where {6 =n}=E({oc =n}|w,). But

W 8

H{o=n}y+Jf +I{c=0})=1

n=0

Since A is transient, P{o = o0} = 0, therefore

D8

I{o=n}+J; =1 as.

n=0

Hence by (2.13)
E(D~(Jy =) =E(D*Jt(1 —I{o =0} —J3)).
For fixed w, with D*{w,) = 1, standard Markov time arguments give
T (@) = I (@) + I{o = 0} (@) Ji"(w).
Hence
ED Jy)—E(DJ)y=E(D*J —D*J;J).

But as mentioned before, E(D J;)=E(D*J;) and E(D~J)=E(D*J).
Therefore
E(DY))y=E(D*J;J).

PROOF OF THEOREM 2.2. Let
n(w, ) =sup{j = 0:R(j, wy) = A(n, w) for some — o0 <n <o},
o(w,, W) =sup{n = 0:R(n, w,)) =A(n, w,)}.

We first note that P{n < 0,0 | <o} = 1. (Assume not, then if
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Howo)= 3 3 I{RU,w) =A@, o},

n=—cw j=0

P{H = «} >0 and hence E(H) = . But E(H) = E,(G) < «0.) Therefore

1=

I8

Y P{n=j,0=n}

j=0

Let B, ;= {n =j, 0 =n}. Then (w,, w,)€B, ; if and only if
(@) A(n, w) = R(j, wy),
(b) A(m, w,) # A(n, w;), n <m <o,
(¢) Rtk, w)) #A(m, wy), j <k <0, — oo <m < o0.
For fixed n, j we define R', R% A by

Rl(ks w2)=R(]_k, CU2)_R(], C()z), Oéksja
Rz(ks w2)=R(.]+ka wZ)—R(J’ w2)7 0§k<w:
Am,w)=An +m, ) — A, w), — oo <m < oo,

with the same conventions about oo and oo as in the previous proof. Then (a),
(b), (¢) are equivalent to
(@) R'(J, @) =A(—n, w),
by Am, ) #0,0<m <0,
(cY Rk, w)#A(m,w),0<k <o, —w0<m<w.
Again we use (2.1)-(2.9) to conclude that if E,,, ;= {(a)"—(c)” holds} where
(@)” R'(J, w))=A(—n, w),
by A(m,w)#0,0<m < o0,
©) Rk, w))#A(m, w), 0<k <w, —w<m< w0,
then P(B, ;) = P(B, ). Since R' and R? are independent we get

1= 3 3 P{@™©" hold)

n=-—-ow j=0

=E1(D+(wl).r(w,) ) §PZ{R(j,wz>=A(n,wl>})

n=—w j=0
= E(D*JG).

The proof of Theorem 2.2 can be used to give a more general result which we
will need. Let {x,}*-_, be a sequence of points in Z¢ U {0} with x, = 0. If
X, # oo we define
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X, - X X, F# o0
(Tkx)n ={mj+k k> n+k )
b

Xn+k = 0.

We call a function ® on sequences invariant under translations if (7} x) =
®(x) whenever x; # co. Then

COROLLARY 2.5. If® is a bounded function on sequences, invariant under
translations, and if E\(G) < o, then

E(GD*J®(A4)) = E|(P(A4)).

PROOF. Asinthe above theorem,ifB, ;,, ={n=j,0=n,a=®=b}we
get

Plas=®=£b}=3 Y PByju)

Jj=0 n=—w

Since ®(4) = D(4) we get
P(B, ;.5)=P{(a)"~(c)” hold, a = ® = b},
and summing over all n, j gives
Pla=®=b}=ED*'JGI(a=DP=Dh)).

Since this holds for every a =< b, the corollary follows.

3. Upper bound for F(N)

Let S!, $%, S? be independent simple random walks starting at the origin in
Z¢ and let

ILIO, N]={S'(j):0=j =N}, IT;(0, N1 = {S(j): 0<j =N}
and
F(N) = P{I1,(0, N] 0 (TL,[0, N1 U IL;{0, N) = & }.
In the next two sections we prove:
THEOREM 3.1. There exist constants 0 < ¢, < ¢, < oo such that
NS F(NYSN™Y,  d=3,

ONT'SEF(N)= N7, d=2.
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This section will be devoted to showing how the results of §2 can be used to
prove the upper bound.

In the notation of the previous section we let A(n) be a two-sided simple
random walk with killing rate § = 8, = 1/N, and R(n) a third walk indepen-
dent of 4 also with killing rate By. In other words, if we let §', 62, §° be random
variables with

P{5f=k}=]lv(1—lN)k.

independent of S, §%, S3, as well as each other, we may choose
S%(n), 0<n=6%

1 <p<ASt
A(m)= {S%(—n), —4&=n=0, and R(n)={S(n)’ 0=n=d,

0, otherwise,
0, otherwise,

and then A(n) and R(n) satisfy (2.1)-(2.9). We assume that S" is defined on
(Q,, Py); S% S° defined on (Q,, P,); and (Q, P) = (2, X Q,, P, X P,) as in §2.

Let ®(w,) = 6Xw,) + 6% (w,) — 1 and let K,, K,, K, be the indicator functions
of the events

{£§¢§E}, {i§52§ﬂ}, {ﬂgséﬁ},
100 20" 1100 50/ 1100 50

respectively. Note that for N = 100, K, K; = K|, and that ® in invariant under
translations. It is easy to see that
3.1 lim inf E(K,K;) 2 ¢,.
Let
G(w)= inf G¥w)

—w<k<w

where G¥(w,) = o if A(k, @) = o and otherwise

Gk(wl) = 2 g(A(m + k: wl) - A(ka wl))’

m=—a

where g is as in Theorem 2.2. Note that G is invariant under translations and
hence so is GK,. By Corolllary 2.5, for any a ER

E(GJID*I{G = a}K,) = E\(KI{G = a)).
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But G = a on the set {G = a}. hence
1
E(JD*I{G =a}K) =- E(KI{G =a)),
a

or, by integrating on a (since there are only a countable number of finite
random walk paths, G takes on only a discrete number of values so we are
really summing),

(3.2) E\(JD*K) = E\(G)'K)).

A standard estimate using the local central limit theorem (see e.g. Spitzer
[10]) gives
[x]?
Y P{SMn)=x}Zc(|x|7@ A1),
n=0
Since a random walk with killing rate # = 1/N has probability (1 — 8)*" of
taking at least | x| 2 steps we get

g)Z a1 =A™ (Ix |7 "D A1)

= ¢ h(x)
where
h(x)=e "I"N(|x|7“=2A1).
If we let
smor= (3 vz

then if N/100 = ®(w,) = N/20,

Gz inf  g(SG, @) - SU, @),

100 —wro=i,jsNo
Hence if we define

plw) = sup IS3, w) —SU, w)l,

—N/2DZi,j SN0

H(w) = inf h(S(, @) = S(j, @),

—N/20=i,j=N/20

then



Vol. 65, 1989 RANDOM WALKS AND SETS 127

(3.3) E(G'K)=oN'E(H ) =N~ 'E(e”"p*7?).

But the central limit theorem and reflection principle give for r >0

-]

P{pzr\/l_\’}éP{ sup

L <N20 20 2
U
=P sup |SG)=zr —
0=i<N/10 2
2
=2P {‘S(ﬁﬂ Zr [—]Y}éczexp{—s—r}.
10 2 44

Hence
El(e _pz/di — 2) = CzN(d; 2)/2.
Combining this with (3.2), (3.3) and the estimate K,K; < K|, we get

OGN, d =3,

34 E(JD*K,K3) =
(3.4) (ID7KGK) {CZN_I’ s

By (3.1),
EI(JD+K2K3) = P{K2K3 = 1}E1(JD+ | K2K3 = 1)

2 ¢,E\(Jy56Dyss0)
where
J (@) =P{S'(j, wy) # S(k, w), —N <k <N,0<j <aN},
D (@) =I{S¥k, ) # 0,0 <k <aN}.
Therefore, (3.4) implies

C2N_1/2, d bt 3,

3.5 E(JD) =
(3.5) (JD) {czN“, i=2

where J = J;, D = D,. It remains to prove the estimate for E,(J) = F(N).
Let 0,= 0 and for i >0,
g, =inf{m >o,_, : S (m)=0}.
Let

A=sup{n:0, =N},
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and let B,, V,, be the indicator functions of the events {A=n}, {0, =m},
respectively. Let L, be the indicator function of the event

{3e,lel =1,8%j,w)#e,forj=0,+1,0=r<n}.

Since returns to the origin are independent, and S(o, + 1) is a point of
norm one,

(3.6) E(L,)= (2d — 1)"_l :

2d

Let

(@) =PyS'(,w) # Sk, w),0<j =N, —-N=k=0orN—m<k =N},
D, () =I{S(k, ) #0, N—m <k =N}.

Then B,V,,=1{o,=m }ﬁm. Clearly if A C Z* contains all the points of norm
one, then a random walk starting at O hits 4. Also, given S(0)=S(m) =0,
{S():0=j=m}and {S(j): — N =j =0, m =j = N} are independent. We
then get, using (3.5) and (3.6),

E\(JB,V,) < E\(JI{o, = m}D,,)
3.7 = E({0, =m}L,J,D,).

— n—1
=P {o,=m}(N — m)d-9 <———————2d 1) .

2d
For d = 3, we need only the standard estimate
P,{0,= N/2} = P,{S(j) = 0 for some j = N/2}
<N~ 12,

to conclude

~ N N ~
E(J)= Z 2 E\(JB,V,)

m=0 n=0
< cN/2)" 2P, {6, < N/2} + P{6, = N/2}
=< CZN_M!.

For d = 2 we need the estimate
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2
(3.8) P{o,=m}=—2" m #0,

m(log m)*’

which we prove below. Using (3.8), we get

Ehze 3 3 Pl —m}( )"”{(N—m)-*u}

m=0 n=0

<Plo,=N}+a & 3 _"2__<3)""1 1

m=1 n—0 m(logm)*\4 N—-m

e 3 1f>{o"=0}(§)"_ll
"Zo s N
Nl 1
=N+ m2=1 m(logm)z(N—m)_i_czN—l

=Nl

To prove (3.8), let X,=0,—0,_,. Then X, X,,...,X, are 1i.d.
random variables and P{g, = m}=P{X, + --- + X, =m}. We first derive
the estimate

(3.9) P{X,=k} =k (log k).

To prove this consider g(j, x) = P{S(j)=x;S({#) # 0,0 <i =,/2}. Thenbya
standard estimate and the Local Central Limit Theorem,

q(j, x) = P{S(i) # 0,0 <i =j/2} sup P{S()=x|S(j/2]) =y}

=c(loghk) k.

For k even, by splitting the path into two pieces and reversing time,

-3 )

But since
k B k 1y
Yq E’X =c(logk)™' and g¢q E’X =c(logk) 'k},

a simple argument gives (3.9). The inequality for (3.8) is obvious if n = m34, so
we may assume # < m** Then,
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P{Xi+---+X,=m}

=Y P(Xi\+-- +X,=m, X, Zm/n}
j=1

=I1P{X1+ ""+‘Xn=m,X|§m/n}
=nP{X,+ -+ X, =m|Xo+ -+ X, =m—m/in}

=c,n*m~(log m) 2

4. Lower bound for F(N)

The main result needed for the lower bound is the following proposi-
tion which essentially states that a random walk path for d =2,3 has

positive capacity. Proofs can be found in Erdés and Taylor [3] or Felder and
Frohlich [4].

LEMMA 4.1. There exists a ¢,> 0 such that if S and S* are independent
random walks starting of 0 and x respectively with | x| < 2NV and

C={S(—N,N)NnS¥O,N)# &},
then

P(C)zc,.
We need a slight improvernent on this.
LEMMA 4.2. Let
A={S(—3N,3N)NS*O,N)=3},
B ={(S(—3N,—2N)U S(2N, 3N)) N S¥0,2N) =&},
C={S(—N,N)NS*0,2N)= & }.
Then there exists a constant ¢, > 0 such that if AIN'? < | x| = N2,

liminf PUNBNC)=c,.

N—o
Proor. Let
D, ={(|S(j)—x|z3rN"” —N=j=N}.
Then



Vol. 65, 1989 RANDOM WALKS AND SETS 131

lim liminf P(D,)=1.

r—0 N—x

(This can be seen from the invariance principle and the fact that Brownian
motion does not hit points for d = 2.) Hence by Lemma 4.1 there isan r >0
such that

lim inf ( inf  P(D, N {S(—N,N)N SX0,N) # & })> >,

Nz N y—xi=m'?
where P%” indicates probabilities assuming S(0) =0 and S*0) =y. If
L ={ISj)—x| =N 0=j =N},
P(L,) =Z ¢, and by a standard Markov argument we get
li}r&inf P(L,nCNnD)Yzc,.
If
My = {I1S*(j)| =RN',0=j =2N}
then
Iim liminf P(Mz)=1
R+x N-w
and hence for some R < o0
lilr&iff P(L,.NnCND,NMp)zc,.
Finally, if
Q={ISU) Z2RN":, 2N = |j| =3N; |S(j) —x| = 2rN"*, N = |j| = 3N},
then
E(,|S(),-N=j=N)z¢
on D,, and hence
PL,NCND.NMpNQ)zc,.
ButANBNCDOL NnCnND,NMgNQ so the lemma is proved.
PROOF OF THE LOWER BoUND. If S(0) =0, S%0) = x let
t=inf{j Z 0: S*(J)ES(—3N,3N)}, o=sup{k =3N:S(k)=S%1)}.

Then Lemma 4.2 gives that
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2N 2N
@.1) 5 (z y P°"{z=j,a=k})zclN‘”2.

x€Z8 \j=N k=-2N

But for a fixed j, k, with N <j = 2N, — 2N =<k = 2N, by reversing paths we
can see that

Y P“{1=j,0=k}=F(N),

€z’

and hence

2N 2N
(4.2) Y Y ¥ PM{r=j 0=k} NF©).

k=-2N j=N xez'

The lower bound follows from (4.1) and (4.2).
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